МИНИСТЕРСТВА НАУКИ И ТЕХНИЧЕСКОЙ ПОЛИТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
АО "КОМПАНИЯ "РОССТАНКОИНСТРУМЕНТ""
РОССИЙСКОГО СОЮЗА ПРОМЫШЛЕННИКОВ
И ПРЕДПРИНИМАТЕЛЕЙ
ИНЖЕНЕРНОЙ АКАДЕМИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГЛАВНЫЙ РЕДАКТОР Д.И. ПОЛЯКОВ
РЕДАКЦИОННАЯ КОЛЛЕГИЯ: Александров М.П., Алексейчук Г.П., Арзамасов Б.Н., Битунов В.В., Братухин А.Г., Дрождев Ю.Н. (председатель секции конструирования и расчета машин), Ипатов М.И., Корзинкин М.В., Кузьминский А.А., Логунов А.Б., Подураев В.Н. (председатель секции технологии машиностроения), Попов Д.Н., Проскуряков А.В., Рыбакова Л.М., Савилов Ю.В., Савкин А.И. (заместитель главного редактора), Семенов Е.И. (председатель секции обработки материалов без снятия стружки), Соколов Б.Н., Строганов Г.Б., Третьяков Э.А. (председатель секции организации и экономики производства), Филиппов Е.К., Цыганкова И.А. (ответственный секретарь)

ИЗДАЕТСЯ С НОЯБРЯ 1921 ГОДА

Журнал переводится на английский язык, переиздается и распространяется во всем мире фирмой "Аллerton Пресс" (США)

Ордена Трудового Красного Знамени издательство "Машиностроение"

Адрес редакции:
129836, Москва, ГСП-110, проспект Мира, д. 106
Телефоны: 287-87-93, 287-23-20

Оригинал-макет изготовлен в издательстве "Машиностроение".

Отпечатано в Подольской типографии Чеховского полиграфического комбината.
142110, г. Подольск, ул. Кирова, 25
СОДЕРЖАНИЕ

КОНСТРУИРОВАНИЕ, РАСЧЕТ, ИСПЫТАНИЯ И НАДЖЕЛЕННОСТЬ МАШИН

Салтыков М.А., Казанская А.М. — О развитии и применении макромеханических моделей для проектных расчетов машин 3
Деминшук И.В., Деминшук Е.Л., Пузьрыко Е.С. — Оптимальное проектирование вращающихся дисков 7
Бойцов Б.В., Бойцов В.В., Дудкин В.П., Петухов Ю.В. — Рост усталостных трещин в сварных соединениях 11

ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ

Герасименко В.Я., Михневич П.Я. — Оригинальное переносное специализированное оборудование для обработки торцов труб ... 42
Любченко В.Г. — Рецензии на кн. М.С. Полякова "Технология упрочнения" ... 43
Шеевелева Г.И. — Рецензии на кн. Э.Б. Вултакова "Теория эвольвентных зубчатых передач" .. 45
Новости промышленной техники ... 47
Внимание читателям ... 35, 48

DESIGN, CALCULATION, TESTS AND RELIABILITY OF MACHINES

Saltykov M.A., Kazanskaya A.M. — About development and using of macromechanical models for design calculations of machine elements 3
Demianushko I.V., Demianushko E.L., Puzyrko E.S. — Optimal design of rotating disks .. 7
Boytsov B.V., Boytsov Y.B., Dudkin V.P., Petukhov Yu.V. — Fatigue cracks growth in welding joints 11

MANUFACTURING ENGINEERING

Grechishnikov V.A., Malygin Y.I., Khudyakov M.P., Kolmakova I.S. — Calculated optimization methods of module machining attachments design .. 13
Gruby S.Y., Bogovitseva S.P., Kosteev V.A. — State investigations of diamond microtorned precision surfaces ... 19
Kutin A.A. — Development and creation experience of competitive NC lathes series ... 24
Polyakov A.N., Nikitina E.P. — Thermoelastic model using for machine-tools thermal processes analysis ... 27
Kiselev E.S., Ulyanin A.N., Kurzakova S.Z., Kuznetsova M.A. — Modern grinding cutting fluids ... 30
Multi-aspect simulation in CAD of products in mechanical and instrument engineering ... 34

PRODUCTION ORGANIZATION AND ECONOMICS

Kolobov A.A., Omelchenko I.N., Filipov N.V. — Forming processes simulation of deliveries service level 36

TECHNICAL INFORMATION

Gerasimenko V.Ya., Mikhnevich P.Ya. — Original portable specialized tube facing machining equipment .. 42
Lyuttsau V.G. — Book review M.S. Polyak "Hardening Technology" ... 43
Sheveleva G.I. — Book review E.B. Vulkakov "Theory of involute gearings" ... 45
News in drive engineering ... 47

© Издательство "Машиностроение", "Вестник машиностроения", 1996

Сдано в набор 06.05.96. Подписано в печать 20.06.96.
Формат 60×88 1/8. Бумага книжно-журнальная.
Печать офсетная. Усл. печ. л. 5,88.
Усл. кр.-отт. 7,35. Уч.-изд. л. 7,64. Заказ 560.
струйных практически такая же, как и цельных. Однако в зоне высоких нагрузок (М > 300 Н·м) они имеют "падающую" характеристику жесткости. Конечно-торцовые соединения в этом случае более надежны. Кроме того, радиальное бение последних как правило ниже.

Выводы

1. Использование переходных матриц позволяет рассчитывать статические и динамические характеристики АМВИ различных структур и состава на основании единой математической модели инструмента.

2. Результаты расчетов, проведенных на основании математической модели, подтверждаются результатами стендовых испытаний образцов инструмента.

3. По результатам исследования математической модели инструмента определены рекомендации по выбору типа зала соединения и его конструктивно-технологических параметров. Результаты исследования согласуются с данными экспериментальной проверки и производственно-техническим опытом.

Список литературы

элементов лазерных технологических установок.
Применение для этой цели традиционных методов полирования свободным абразивом приводит к возникновению дефектов в обработанном поверхностном слое: фрагментации структуры, микроискажения, шероховатости абразивными частицами. Метод алмазного микроточения позволяет в значительной степени избежать указанных дефектов, однако требуется определения рациональных режимов и условий, обеспечивающих заданные параметры состояния обработанной поверхности. Следует учитывать также принципиальные ограничения метода алмазного микроточения по выбору обрабатываемого материала, так как высокое качество достигается при обработке поверхностей из меди и алюминиевых сплавов.
С целью выбора условий и режимов, обеспечивающих требуемые параметры шероховатости прецизи-
онных поверхностей и оптические характеристики, проведен анализ факторов и выполнены технологические и лабораторные исследования.

При исследовании алмазное микроточение рассматривалось как процесс окончательной механической обработки металлических поверхностей на специальных особо точных станках алмазным монокристаллическим инструментом с глубиной резания до 10 мкм. Такая обработка позволяет изготовить поверхности с предельно низкой шероховатостью и высокой отражательной способностью.

Основными показателями качества поверхностей такого класса являются параметры шероховатости, характеризующие выходные свойства неровностей профиля (ГОСТ 2789—80, ГОСТ 25142—82, стандарт ISO): среднее арифметическое отклонение Ra; среднее квадратическое отклонение Rq; наибольшая высота неровностей профиля Rmax, высота неровностей профиля по десяти точкам Rz (Rtm), высота наибольшего выступа профиля Rp, глубина наибольшей впадины профиля Rv, а также параметры, характеризующие оптические свойства: коэффициенты зеркального Rh и диффузного Rd отражений.

По результатам анализа отмечено, что на процесс резания и качество обработанной поверхности при алмазном микроточении влияют следующие факторы: свойства и структура обрабатываемого материала, технические характеристики оборудования и специального режущего инструмента, режимы и условия обработки.

По данным работы [1] на специальном особо точном станке достигнута шероховатость обработанной поверхности по параметру Rmax = 10 нм (чистый алюминий 99,99%); подача S0 = 10 мкм/об и Rmax = 15 нм (бескислородная медь 99,95%); S0 = 10 мкм/об; отклонение от плоскостности 0,1 мкм на диаметре 50 мм. Для получения такого качества обрабатываемое металло необходимо уменьшить содержание примесей, вызывающих кристаллизацию интерметаллических соединений, до тысячных долей процента и провести очистку твердых частиц, представляющих собой неметаллические включения после растирания, до величин в несколько микрометров. При обработке меди и алюминиевых сплавов стандартных марок шероховатость обработанной поверхности увеличивается вследствие повышенного содержания примесей и наличия легирующих элементов, повышающих прочностные характеристики материала.

В качестве примера рассмотрены основы жестких дисков магнитной памяти, которые изготавливаются из листового проката алюминиевых сплавов 1541М, 15410C с содержанием основного легирующего элемента магния в пределах 3,8-4,8%. Технологический процесс обработки дисков включает операции термообработки для снятия остаточных деформаций, предварительного и окончательного алмазного точения (Ra ≤ 10 нм), нанесения твердого аморфного покрытия Ni—P с последующим полированиям для обеспечения шероховатости в несколько нанометров.

Для изготовления отражающих оптических элементов лазерных установок находит применение алюминиевые сплавы AMг6, В95 (ГОСТ 4784—74), специальный алюминиевый сплав 1201, бескислородная медь М06 (ГОСТ 859—78). Отражатели малых габаритных размеров изготавливаются цельными из круглого проката этих материалов. В оптических элементах сборных конструкций используется листовой прокат или нанесенная медь как поверхностный слой на корпусе из конструкционного материала. Шероховатость отражающих поверхностей должна находиться в пределах Rz = 25-50 нм, причем допустимое ее значение уменьшается с переходом от инфракрасной (ИК) к видимым областям спектра лазерного излучения.

Следует отметить особое значение технических требований, предъявляемых к специальному технологическому оборудованию, предназначенному для алмазного микроточения прецизионных поверхностей. Так, усилиями некоторых станкостроительных фирм и научно-исследовательских лабораторий США, Западной Европы (Lawrence Livermore Laboratory, Union Carbide, Moore Special Tools, Pneumo Precision, Ex-Cell-O, Philips Research Laboratory, Cranfield Unit for Precision Engineering и др.) и Японии создана гамма уникальных станков, реализующих возможность алмазного микроточения прецизионных поверхностей.

Сообщается, что в лабораторных условиях при соблюдении предельно жестких требований по термостабилизации, виброситуации, фильтрации окружающей и технологических сред достигнуты отклонения от заданной формы до 25 нм, среднее квадратическое отклонение профиля 4,2 нм (станок по проекту LODTM, США), параметры шероховатости поверхностей основ жестких дисков магнитной памяти Rmax = 20 нм и Rq = 3 нм (японские станки АНР 50-32, ДР = 400) [2, 3].

Отечественные уникальные особо точные станки (мод. МК6516, МК6501, МК6521ФЗ (МССО "Красный пролетарий") и мод. МО1805, МА1805, МА1801, МО1045, МА1815 (СКТВ ИСМ АН Украин) по своим технологическим возможностям приближаются к лучшим зарубежным аналогам. Конструктивные особенности этих станков — наличие гранитной станницы или специальных пневматических виброопор, что совместно с массивным фундаментом обеспечивает защиту от внешних вибраций, в том числе в низкочастотной (до нескольких герц) полосе спектра. Станки оснащаются жесткими шпинделем и суппортами с аэростатическими подшипниками во всех подвижных узлах, системами балансировки изделия и оснастки, лазерными и индуктивными системами контроля за перемещениями исполнительных органов и режущего инструмента, числовым программным управлением или управляющей ЭВМ. Например, основные характеристики электрошпинделя станка мод. МО1045 составляют: беступенчатая частота вращения в пределах 150—1500 мин⁻¹, осевая 900 Н/мкм и радиальная 450 Н/мкм жесткости, максимальная нагрузка 1000 Н.

Технические возможности особо точных станков позволяют обрабатывать прецизионные металлические поверхности различных форм (плоские, сферические, асферические, цилиндрические, конические) с отклонением формы до 0,1-0,2 мкм и параметром шероховатости Rmax = 20 нм. Однако при обработке следует учитывать влияние некоторых факторов,

ISSN 0042-4633. ВЕСТНИК МАШИНОСТРОЕНИЯ. 1996. № 7
Важное значение имеет качество обработки резания на основании компенсационных свойств сплавов. Это обеспечивает высокую точность и надежность производства. При этом особенно актуально применение алмазных твердых сплавов для обработки деталей с высокими требованиями к поверхности.

С целью уменьшения влияния случайных составляющих и неоднородности свойств материала исследуемых поверхностей, каждую поверхность измеряли в 10 радиальных сечениях. Ограничение в количестве сечений обусловлено значительной трудоемкостью измерений, кроме того, как показали эксперименты, такие измерения позволяют вполне достоверно проследить изменение параметров шероховатости от образца к образцу. До измерений осуществлялась температурная стабилизация, а также минимизировалось влияние внешних вибраций. Параметры шероховатости измеряли с применением осесимметричного фильтра, наилучшее значение волнистости. Такая методика позволила получить оценки измеренных параметров Rmax и RaRq с погрешностью 10-15 и 6-8 % соответственно.

В целом, результаты по шероховатости обработанных поверхностей получены при алмазном микроопробовании специального мелкокристаллического сплава системы алюминий—магний. Результаты исследования параметров Rmax составили: диапазон изменения 14.2-25.3 нм; среднее 17.3 нм; среднеквадратическое значение 45.2 нм.
отклонение 1,05 нм; коэффициент вариации 0,06 (46 измерений, S = 6,3 +9,6 мкм/об).

При обработке поверхностей из стандартных сплавов шероховатость возрастает как по средним значениям, так и по рассеянию. Результаты исследования шероховатости алюминиевых поверхностей основ дисков магнитной памяти различных партий (число исследованных поверхностей, среднее значение параметров, среднеквадратическое отклонение, коэффициент вариации (S = 19,5 мкм/об)) приведены ниже:

<table>
<thead>
<tr>
<th>Число поверхностей</th>
<th>Среднее значение, нм</th>
<th>Среднеквадратическое отклонение, нм</th>
<th>Коэффициент вариации</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rmax</td>
<td>83</td>
<td>36,2</td>
<td>12,61</td>
</tr>
<tr>
<td>Ra</td>
<td>22</td>
<td>6,0</td>
<td>0,87</td>
</tr>
<tr>
<td>Rq</td>
<td>22</td>
<td>7,7</td>
<td>1,10</td>
</tr>
<tr>
<td>Rp</td>
<td>23</td>
<td>29,7</td>
<td>8,58</td>
</tr>
<tr>
<td>Rv</td>
<td>12</td>
<td>25,1</td>
<td>4,13</td>
</tr>
</tbody>
</table>

Шероховатость по верхнему отклонению параметра Rmax составляет менее 49 нм, что удовлетворяет предъявляемым требованиям.

Параметры шероховатости могут быть уменьшены при рациональном выборе подачи. На рис. 1 приведены экспериментальные точки значений и аппроксимирующие кривые параметров шероховатости Rmax, Rq, Ra, измеренные на алюминиевых и медных поверхностях, обработанных алмазным микроточением при S0 = 2,5 +39 мкм/об (глубина резания 4-6 мкм). Влияние подачи на параметры шероховатости (в нм) аппроксимировано степенной зависимостью:

\[R = CS^m \pm \Delta, \]

где C — постоянный коэффициент; m — показатель степени; \(\Delta \) — среднеквадратическая ошибка аппроксимации.

В табл. 1 приведены значения характеристик аппроксимации зависимости (1) (C, m и \(\Delta \)) для соответствующих параметров шероховатости. Параметр шероховатости Rmax ≤ 50 нм гарантированно обеспечивается при значениях S0 < 9 мкм/об. Такая шероховатость позволяет использовать эти поверхности как отражающие в оптических элементах различного назначения.

Характеристики отражения оптических поверхностей образцов после алмазного микроточения измеряли на спектрофотометрах "U-3400" и "270-50" фирмы "HITACHI" с приставкой на отражение поверхностей. Коэффициент R2 зеркального отражения при длине волны \(\lambda = 10,6 \) мкм и угле падения излучения, близком к нормальному, измеряли на инфракрасном спектрофотометре "270-50" с приставкой на отражение "IRR-31" и сравнивали с калиброванным стандартом (99±0,3 %). Поверхности натуралий изделий (при \(\lambda = 10,6 \) мкм) контролировали на специальном стенде с погрешностью ±0,2 %. Коэффициенты зеркального R2 (угол падения излучения, близкий к нормальному) и диффузного R4 отражений поверхностей образцов в диапазоне длин волн \(\lambda = 0,25 \pm 1,5 \) мкм определяли на спектрофотометре "U-3400", используя приставку на отражение.

Характеристики отражения поверхностей после алмазного микроточения при оптимальных режимах зависят прежде всего от материала поверхности, наличия и состава отражающего и защитного покрытий. В табл. 2 приведены коэффициенты R2 зеркального отражения при \(\lambda = 10,6 \) мкм для алюминиевых и медных поверхностей без покрытий, а также с отражающими медным и серебряным покрытием после алмазного микроточения. В качестве адгезионного переходного слоя использовали хром, защитными покрытиями являлись HfO2 или Al2O3. Из табл. 2 видно, что для поверхностей, обработанных алмазным микроточением, характерна высокая отражательная способность. В ИК области спектра отражающая способность оптических поверхностей после алмазного микроточения практически соответствует
отражательной способности оптических поверхностей, обработанных традиционным методом полирования — доводки.

В ультрафиолетовой (УФ) и видимой областях спектра отмечается разброс значений \(R_g \) и \(R_d \) вследствие анизотропии свойств, вызванной влиянием орнаментации обработанной поверхности относительно падающего излучения и технологическими факторами обработки.

На основании обработки спектральных зависимостей приведены результаты измерений значений \(R_g \) и \(R_d \) (рис. 2) для различных образцов и изделий из сплава AMg6 при \(\lambda = 0,25+1,5 \) мкм, обработанных алмазным микроточением. Средние значения \(R_g \) для образцов из меди МОБ после алмазного точения при \(\lambda = 0,4+0,8 \) мкм приведены ниже:

<table>
<thead>
<tr>
<th>Длина волны (\lambda), нм</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>700</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коэффициент (R_g), %</td>
<td>42</td>
<td>51</td>
<td>55,5</td>
<td>62</td>
<td>91,5</td>
<td>97</td>
<td>98</td>
</tr>
</tbody>
</table>

Анализ показывает, что для изготовления высококачественных оптических элементов, используемых в УФ и видимой областях спектра, целесообразно алмазное микроточение дополнить последующей операцией полирования — доводкой с целью уменьшения, прежде всего, диффузного рассеяния излучения. Кроме того, проведены исследования изменения отражательной способности во времени медных поверхностей, обработанных алмазным микроточением. Для повышения коррозионной стойкости образцы непосредственно после алмазного микроточения облучали на ускорителе с анодным слоем ионами ксенона. Результаты анализа показали, что отражательная способность медных поверхностей после алмазного микроточения и ионной обработки практически не меняется в течение длительного времени. Спектральные зависимости коэффициентов \(R_g \) диффузного отражения образцов из меди МОБ, измеренных непосредственно после обработки алмазным микроточением и ионами ксенона, приведены на рис. 3, a, а также после выдержки в течение 7 мес. в атмосферных условиях (рис. 3, b). Наблюдаемые изменения коэффициентов \(R_g \) находятся в пределах разброса экспериментальных данных, обусловленных анизотропией свойств поверхности. Аналогичные результаты по стабильности отражательной способности получены при соответствующих измерениях коэффициентов \(R_g \) зеркального отражения.

Для анализа причин повышения коррозионной стойкости медных поверхностей, обработанных алмазным микроточением и ионами ксенона, проведен анализ химического состава приповерхностных слоев методом вторичной ионной масс-спектрометрии на приборе "IMS 4F". Установлено, что на образцах, облученных ионами ксенона, присутствует органическая пленка. Для уточнения состава пленки и ее толщины были получены концентрационные профили элементов C, O, Cu и соединений CH, C\(_2\)H\(_2\), CuO, которые показали, что толщина пленки составляет несколько десятков ангстрем и практически не зависит от времени ионной обработки образцов, в то время как спектры образованных пленок на поверхности непосредственно после обработки алмазным микроточением, в которых наблюдаются лишь незначительные загрязнения, не более нескольких монослоев.

Масс-спектры пленки, обнаруженной на поверхности, облученных ионами ксенона, содержат группы интенсивных линий в высокоомолекулярной области спектра, что позволяет предположить наличие полимерной структуры пленок, содержащих крупные звенья с массой около 200 а.е.м. Соединение оксидов меди на поверхностях образцов не обнаружено. Для выяснения механизма образования полимерной пленки после ионной обработки необходимо провести специальные эксперименты.

Таким образом, проведенные исследования подтвердили эффективность микроточения как технологического метода создания высококачественных прецизионных поверхностей с низкой шероховатостью и высокой отражательной способностью. Совершенствование этого метода финишной обработки будет определяться прежде всего развитием специального прецизионного технологического оборудования, которое позволит повысить точность и качество обработки.
Выводы

1. По результатам анализа и исследований установлено определяющее влияние свойств и структуры обрабатываемого металла, технических характеристик оборудования, режимов и условий алмазного микроточения на качество обработанной прессованной поверхности.

2. Высокое качество обработанной поверхности достигается при алмазном микроточении бесскользной медью, алюминия или мелкопризматических сплавов системы алюминий—магний с содержанием примесей до тысячных долей процента.

3. Подача оказывает существенное влияние на шероховатость обработанной поверхности. Оптический класс поверхностей достигается при $S_0 \leq 9$ мкм/об.

4. Прижимная способность поверхностей, обработанных алмазным микроточением, на инфракрасной области спектра соответствует отражательной способности полированной поверхности и может быть увеличена благодаря нанесению отражающих покрытий.

5. В ультрафиолетовой и видимой областях спектра излучения разброс коэффициентов отражения достигает нескольких процентов вследствие анизотропии свойств обработанной поверхности.

6. Полученные рекомендации позволяют рационально выбрать метод и условия обработки прессованной поверхностей металлических поверхностей.

СПИСОК ЛITERATURE